Phone: (+39) 0813995453

Evaluation of medical decision support systems (DDX generators) using real medical cases of varying complexity and origin

HumanInsight Evaluation of medical decision support systems (DDX generators) using real medical cases of varying complexity and origin

BMC Med Inform Decis Mak. 2022 Sep 24;22(1):254. doi: 10.1186/s12911-022-01988-2.


BACKGROUND: Medical decision support systems (CDSSs) are increasingly used in medicine, but their utility in daily medical practice is difficult to evaluate. One variant of CDSS is a generator of differential diagnoses (DDx generator). We performed a feasibility study on three different, publicly available data sets of medical cases in order to identify the frequency in which two different DDx generators provide helpful information (either by providing a list of differential diagnosis or recognizing the expert diagnosis if available) for a given case report.

METHODS: Used data sets were n = 105 cases from a web-based forum of telemedicine with real life cases from Afghanistan (Afghan data set; AD), n = 124 cases discussed in a web-based medical forum (Coliquio data set; CD). Both websites are restricted for medical professionals only. The third data set consisted 50 special case reports published in the New England Journal of Medicine (NEJM). After keyword extraction, data were entered into two different DDx generators (IsabelHealth (IH), Memem7 (M7)) to examine differences in target diagnosis recognition and physician-rated usefulness between DDx generators.

RESULTS: Both DDx generators detected the target diagnosis equally successfully (all cases: M7, 83/170 (49%); IH 90/170 (53%), NEJM: M7, 28/50 (56%); IH, 34/50 (68%); differences n.s.). Differences occurred in AD, where detection of an expert diagnosis was less successful with IH than with M7 (29.7% vs. 54.1%, p = 0.003). In contrast, in CD IH performed significantly better than M7 (73.9% vs. 32.6%, p = 0.021). Congruent identification of target diagnosis occurred in only 46/170 (27.1%) of cases. However, a qualitative analysis of the DDx results revealed useful complements from using the two systems in parallel.

CONCLUSION: Both DDx systems IsabelHealth and Memem7 provided substantial help in finding a helpful list of differential diagnoses or identifying the target diagnosis either in standard cases or complicated and rare cases. Our pilot study highlights the need for different levels of complexity and types of real-world medical test cases, as there are significant differences between DDx generators away from traditional case reports. Combining different results from DDx generators seems to be a possible approach for future review and use of the systems.

PMID:36153527 | DOI:10.1186/s12911-022-01988-2

Powered by WPeMatico

P.IVA 08738511214
Privacy Policy
Cookie Policy

Sede Legale
Viale Campi Flegrei 55
80124 - Napoli

Sede Operativa
Via G.Porzio 4
Centro Direzionale G1
80143 - Napoli

AI 4394
© Copyright 2022 - Humaninsight Srls - All Rights Reserved
Privacy Policy | Cookie Policy
envelopephone-handsetmap-marker linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram