Phone: (+39) 0813995453

Classification of Patient Recovery from COVID-19 Symptoms using Consumer Wearables and Machine Learning

HumanInsight Classification of Patient Recovery from COVID-19 Symptoms using Consumer Wearables and Machine Learning

IEEE J Biomed Health Inform. 2023 Jan 24;PP. doi: 10.1109/JBHI.2023.3239366. Online ahead of print.


Current remote monitoring of COVID-19 patients relies on manual symptom reporting, which is highly dependent on patient compliance. In this research, we present a machine learning (ML)-based remote monitoring method to estimate patient recovery from COVID-19 symptoms using automatically collected wearable device data, instead of relying on manually collected symptom data. We deploy our remote monitoring system, namely eCOVID, in two COVID-19 telemedicine clinics. Our system utilizes a Garmin wearable and symptom tracker mobile app for data collection. The data consists of vitals, lifestyle, and symptom information which is fused into an online report for clinicians to review. Symptom data collected via our mobile app is used to label the recovery status of each patient daily. We propose a ML-based binary patient recovery classifier which uses wearable data to estimate whether a patient has recovered from COVID-19 symptoms. We evaluate our method using leave-one-subject-out (LOSO) cross-validation, and find that Random Forest (RF) is the top performing model. Our method achieves an F1-score of 0.88 when applying our RF-based model personalization technique using weighted bootstrap aggregation. Our results demonstrate that ML-assisted remote monitoring using automatically collected wearable data can supplement or be used in place of manual daily symptom tracking which relies on patient compliance.

PMID:37022003 | DOI:10.1109/JBHI.2023.3239366

Powered by WPeMatico

P.IVA 08738511214
Privacy Policy
Cookie Policy

Sede Legale
Viale Campi Flegrei 55
80124 - Napoli

Sede Operativa
Via G.Porzio 4
Centro Direzionale G1
80143 - Napoli

AI 4394
© Copyright 2022 - Humaninsight Srls - All Rights Reserved
Privacy Policy | Cookie Policy
envelopephone-handsetmap-marker linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram